On the added value of genomics for accurate prediction in pig breeding: LEARNING FROM HISTORICAL DATA

Marcos LopesEgiel Hanenberg, Jenelle Dunkelberger, Barbara Harlizius, Egbert Knol

Topigs Norsvin

PROGRESS IN PIGS

Does GENOMIC SELECTION work?

Aim

To use **Historical EBV**, recorded via routine breeding program procedure, to evaluate the added value of genomics for accurate prediction of EBVs for selection candidates that lack own or progeny performance records

Data

Historical EBVs

No own or progeny performance Estimated up to ~3 years ago <u>Before</u> and <u>after</u> genotyping

Today's EBVs

Own and progeny performance Estimated recently <u>After</u> genotyping

TNB: Total Number Born **ADG:** Average Daily Gain (~25 to 120 Kg)

Dam Line (N=935)

Breeding value estimation

Routine breeding value estimation: multi-breed and multi-trait

- •11 runs
- •106 traits
- > 200,000 animals genotyped
- •> 40 million animals in the pedigree
- •> 20,000,000,000 EBV's / week
- •APY
- •Calc_grm + MiXBLUP

Data

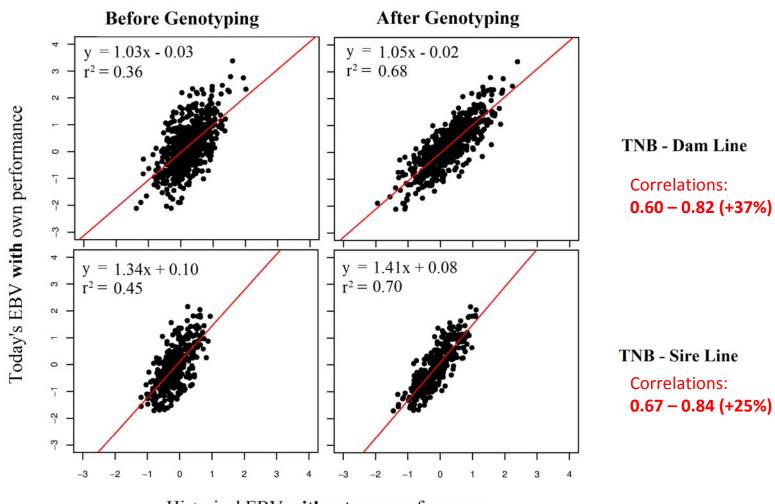
Description of the evaluated data

Line	Trait	Ν	Average reliability of Today's EBV
Dam	TNB	619	58%
	ADG	935	58%
Sire	TNB	360	57%
	ADG	2,153	58%

N: number of animals Reliability: Tier and Meyer (2004)

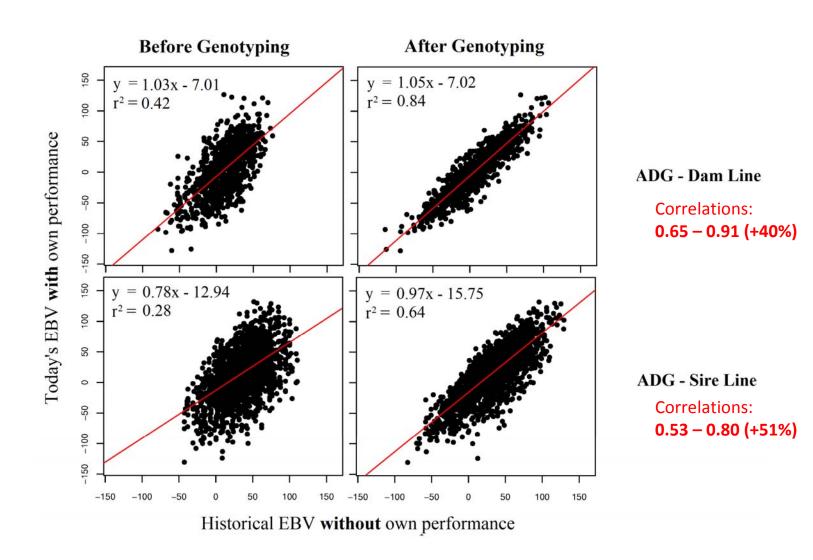
Threshold for Todays' EBV reliability: 50%

Results


Variation in breeding value before and after genotyping

Line	Trait	Genotyping status	Average ± SD	Minimum	Maximum
Dam	TNB	Before	0.26 ± 0.49	-1.38	2.02
		After	0.24 ± 0.66	-1.95	2.38
	ADG	Before	11 ± 26	-79	76
		After	10 ± 36	-115	106
Sire	TNB	Before	-0.16 ± 0.40	-1.20	0.94
		After	-0.14 ± 0.47	-1.45	1.11
	ADG	Before	35 ± 27	-43	110
		After	31 ± 33	-82	129

Variation of EBVs (**SD**) increased up to: 35% - Dam Line | 22% Sire Line


Results - TNB

Historical EBV without own performance

Results - ADG

Discussion

- GS in pigs increase in prediction accuracy: **20 to 50%** Real and simulated data (Lillehammer et al., 2013; Hidalgo et al., 2015; Knol et al., 2016)
- Our results increase in prediction accuracy: **25 to 51%**
- Repeat analyses when more data become available
 3 years ago: beginning of GS in our populations
 Threshold for Todays' EBV reliability > 90% instead of >50%
- Todays' EBV is also using genomics

Discussion

Example (Dam Line)

•Selection of 10% best animals for TNB <u>before</u> genotyping Their average Today's EBV (with own performance) = 1.23 piglets

•Selection of 10% best animals for TNB <u>after</u> genotyping Their average Today's EBV (with own performance) = 1.55 piglets

For this example, selection <u>after</u> genotyping, rather than <u>before</u> genotyping, increased the average EBV by 0.32 piglets

Conclusions

Genomic selection works

- Historical data can be used to indicate the added value of genomics
- Genomics increase the variability of EBVs and the prediction accuracy
- Our results are in line with those demonstrated by previous studies based on real and simulated data